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Metal loss is an increasingly important factor affecting design quality in all high-speed 
applications. As operational frequencies went up, it became evident that formulas ignoring 
roughness of the metal surface greatly underestimated losses. A number of approaches have been 
proposed over the years [1-3] that introduced additional losses by applying frequency-dependent 
correction to the impedance of the smooth metal. A recent survey in this area can be found in [4].  

As of today, a widely accepted approach to model an impedance of the rough metal is taking a 
complex frequency-dependent impedance of the smooth metal and applying to it a multiplier 

that monotonically grows from 1 to >1. Virtually all publications on this topic (and a 
vast majority of commercially available simulators) assume that this correcting multiplier is a 
real-value function. In the literature, it is often called “roughness correction factor.”  

Since the internal impedance of the smooth surface is described by the well-known “skin effect” 
formula, where real and imaginary parts of the impedance are equal, applying a real multiplier to 
it obviously produces the complex value where the parts (resistive and inductive components of 
impedance) are also equal. For example, [2-4] give us the following relations:

, , making and  definitely equal. Similar 
equations/statements can be found in many other publications, including major textbooks. 

Is this a physically valid model of metal impedance? Can we apply a frequency-dependent real 
multiplier to a causal dependence, which the smooth impedance formula definitely is, without 
violating causality? There are only few sources known to us that have raised these questions.  

First, this issue was addressed in [5] where the authors mention that inductive and resistive 
portion of the metal’s internal impedance are generally not equal, but should be mutually related 
by Hilbert transform to enforce model causality. Indeed, the roughness correction factor
was defined and derived as a ratio of the active power dissipated on a rough metal to that 
dissipated on a perfectly smooth metal. From here, it follows that it describes proportionality 
between the resistive portions of the impedance only. As to wording, it would make sense to call

a “loss correction factor” because we have no evident reasons to believe that inductive 
component should be increased in the same proportion. Another publication [6] actually applied 
this idea to find a causal version of Huray’s roughness formula.  

It’s remarkable that these results, despite laying a perfect ground for building physically 
meaningful causal models of metal roughness, went majorly unnoticed. Hence the commonly 
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used practice hasn’t changed since then. Perhaps, this can be explained by the fact that [5] did 
not provide practical examples of causal versions of known models, while [6] might appear too 
academic to the readers, and possibly didn’t contain enough evidence that would convince them 
to immediately start using the causal model. 

A far-reaching goal of this paper is to give an additional impetus to this development and make 
causal roughness models part of the mainstream paradigm when simulating metal losses. As we 
remember, this happened a few years ago with the introduction of causal dielectric loss modeling 
[7, 8]. Now is the time for the metal.  

In addition, we would like to fill in some knowledge gaps regarding this subject, such as: 
 
• General approach to derivation of causal models from given analytical expression (or another 

reasonably complete description) of the metal loss correction factor. 
• Basic relationships existing between loss correction factor, inductance correction factor, 

complex correction factor, real and imaginary parts of internal impedance and inductance of 
the rough metal. 

• Side-by-side comparison of those dependences between causal and non-causal versions of 
Hammerstad and Cannonball-Huray models. 

• Derivation of causal roughness model from loss correction factor specified as tabulated 
dependence. 

We also show that: 
 
• As necessitated by causality requirements, inductive portion of the internal metal impedance 

of the rough metal is not equal, but appears much larger than the corresponding resistive 
portion of it.  

• We analyze the effect of using a causal model of metal roughness on the characteristics of 
transmission lines. Under other conditions being equal, a causal model makes the line’s delay 
and characteristic impedance larger than with non-causal models. We provide expressions 
which formally evaluate this difference. 

• We compare measured characteristics of stripline to simulations when using causal and non-
causal versions of the Cannonball-Huray roughness model [11].  The Cannonball-Huray 
model is a simple model, based on cubic close-packing of equal spheres, which can be used 
to determine the sphere radius and area parameters for the Huray roughness formula. The 
cannonball stack is an example of a cubic close-packing of equal spheres, thus the name for 
the model. By obtaining published conductor roughness parameters, solely from 
manufacturers’ data sheets, the model has shown excellent agreement to measured results up 
to 50 GHz.     
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This paper is organized as follows: Section I gives general relationships for the causal roughness 
correction multiplier, and outlines the process of deriving a causal correction factor for a given 
analytical expression for the loss correction coefficient. In Section II we apply this approach to 
Cannonball-Huray and Hammerstad models. Section III analyzes the results for Cannonball-
Huray and Hammerstad models. In Section IV, we evaluate the effect of using causal models 
when analyzing lossy transmission lines. In Section V we outline the process of finding a 
complex causal model when the loss correction factor is given by a table. In Section VI, we 
describe the Cannonball-Huray roughness model in more detail. Then, we validate the model, 
through a case study, using causal and non-causal versions of Cannonball-Huray formula and 
compare them to the measured results. 

I. General relationships 

As shown in [2, 3], an internal impedance of the metal with smooth surface is related to the skin 
depth, an effective penetration of electromagnetic field into metal surface: 

     (1) 

where is frequency (Hz), is permeability of free space (H/m) and is metal conductivity 
(S/m). As follows from this formula, the thickness of the effective conducting layer decreases as

, thus causing an increase in metal impedance in inverse proportion. From here it follows 
a well-known formula for the complex impedance of the smooth conductor:

, which we will slightly modify and represent as a function of the 
normalized frequency : 

.    (2) 

Here is a “skin resistance,” a constant factor that absorbs some material and geometrical 
parameters of the conductor, and is a complex frequency. It is convenient to establish 
proportionality between the normalized frequency and the angular frequency individually for 
each type of metal roughness model, and we will select it later. An impedance of the rough metal 
surface, under other conditions being equal, is larger and therefore can be expressed as 

 =     (3) 
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where is an additional impedance due to metal roughness. As stated in [5], total and 
additional impedance caused by metal roughness must be a causal function, so that and 

 must be mutual Hilbert transforms. In [1] and in many other sources, the loss 
correction factor is defined as a ratio of the power dissipated in a rough metal to that dissipated 
in a perfectly smooth metal. From this definition it follows that loss correction factor , a real 
function of frequency, is also the ratio of the resistive part of impedance of rough metal to the 
resistive part of impedance of smooth metal: 

= = .   (4)  

In all practical cases it is assumed that , because metal roughness makes no addition to 
impedance at low frequency. 

Note that it would be improper to use the relations or

, because we have no evidence that roughness modifies inductive 
(imaginary) part of impedance in the same proportion as it does for resistive (real) part. Instead, 
we should assume that there exists similar relationship with complex (yet unknown) factor

: 
.     (5) 

How can we practically find ? From (2) and (4), it follows that:  

    (6) 

and we also know that must be a causal function. For causal complex function, the 
imaginary part can be restored from the known real part (6), by using certain types of Kronig-
Kramers (K-K) relations. Once the missing imaginary part is restored, the unknown 
complex correction factor can be found as: 

.      (7) 

With a known causal complex correction factor, an additional impedance due to metal roughness 
becomes: 

.       (8) 

From (8), we can express the factors at real and imaginary parts of the impedance of smooth 
metal as: 
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.   (9) 

As we see, real and imaginary parts of skin impedance are increased by different factors. The one 
in the real part describes loss correction factor, the other is an inductance correction factor. 
Also, comparing (4) and (9), we see that 

.     (10) 

This result matches [6]. An important conclusion from here is that for a given complex 
correction factor that applies to complex impedance of the smooth metal, the loss correction 
factor is a difference between its real and imaginary parts; whereas, an inductance correction 
factor is a sum of real and imaginary parts of the same complex factor. As we see, metal 
roughness modifies resistive and inductive parts of the smooth metal in different proportion. 

Below, we will also need an expression for an additional complex inductance caused by metal 
roughness. It can be found as a ratio of the complex impedance (8) and complex frequency as

. Real and imaginary parts of the complex impedance and 

inductance are related as . Therefore, imaginary 
part of the inductance can be found as 

 .   (11) 

As we see, it is fully defined by the loss correction factor. 
 

II. Finding causal correction factor for 
Cannonball-Huray and Hammerstad models 

Cannonball-Huray model 
 
We will use the above equations to illustrate the process of deriving a complex correction factor 
for a single component of the Cannonball-Huray roughness model. As shown in [3, 11], these 
models define loss correction factor in a form of the sum 
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        (12) 

where δ(f) is a skin depth defined in (1), are radii of spherical shapes representing rough metal, 

and factors are constant and defined by geometry assumed by each model.  

Let’s consider n-th summand in (12), assuming . By introducing a dimensionless 

normalized frequency , we represent this component as a simple 
function of a single argument: 

, .   (13) 

Then, using definitions and ideas from Section I, we derive a complex factor as shown in 

Appendix A. This factor becomes . Considering all summands in (12), the final 

result becomes: 

 , where .   (14) 

Hammerstad model 
 
Hammerstad loss correction factor [2] is given by equation: 

    (15) 

where is RMS surface roughness, and is skin depth. The normalized offset-free factor 
here is  

, where .    (16) 

Derivation of the complex correction factor can be found in Appendix B. The resulted causal 
factor becomes: 
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   (17) 

where is complex frequency, and is defined in (16). 

 

III. Causal versions of Hammerstad and 
Cannonball-Huray roughness models 

The approach we outlined in the previous section can be applied to any other model type, if the 
loss correction factor is represented by a continuous analytical function. Some details could be 
different though, such as variable techniques when finding K-K integral. 

In this section we present formal results for causal and non-causal versions of Hammerstad and 
Cannonball-Huray models. To allow side-by-side comparison, we put formulas into Table 1 
below. For completeness, the table contains the definition of smooth metal impedance and the 
normalized frequencies used in each case.  

As we see, complex characteristics, such as normalized complex correction factor, impedance 
and inductance added due to metal roughness, are functions in complex frequency. There exist 
inverse Laplace transforms of these characteristics, thus proving their causality. At the same 
time, these models provide loss increase factor (#2 in the Table 1), exactly as defined for the 
corresponding model types. 

Table 1. Formulas describing causal Hammerstad and Cannonball-Huray models 

 Causal Models Hammerstad Cannonball-
Huray 

 Impedance of smooth 
metal , 
where  

 

 Additional impedance 
due to metal roughness 

 

1 Normalized frequency 
 

, 

is r.m.s. surface roughness 

, 
is a ball radius 

2 Normalized loss 
increase factor    
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3 Normalized complex 
correction factor 

 
  

4 , real part of 

 
(*1)  

5 , imaginary 

part of  
  

6 , 
Loss increase factor: a 
factor at smooth metal 
resistance, making an 
additional contribution 
into resistive part of 
impedance due to 
roughness 

  

7 , 
Inductance increase 
factor: a factor at 
smooth metal 
inductance, making an 
additional contribution 
into inductive part of 
impedance due to 
roughness 

  

8 Complex impedance 
added due to metal 
roughness, normalized 
on  

  

9 Complex inductance 
added due to metal 
roughness, normalized 
on  

  

Note (*1): To avoid discontinuity, here and below, should be computed as ATAN2( , ). 

Let us now analyze these results side-by-side. In the plots below, characteristics of the 
Hammerstad model are shown by dashed lines, while Cannonball-Huray model ones are shown 
by solid lines. If the plot provides real and imaginary parts of the dependence, they will be 
shown by red and blue color respectively. By [#n], we denote its position in Table 1. 

In this section we intentionally consider the functions in normalized frequency, even though the 
exact definition of the normalized frequency in both cases is different. The functions may also 
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have different multipliers. If the difference were only due to scaling/ normalization, it would be 
possible to overlap the curves on the logarithmic plots by shifting them along the axes. However, 
it is more than that, and we cannot make the curves coincide. 

	

Figure 1. (a) Hammerstad and Cannonball-Huray loss correction factor [#2]; (b) real/imaginary parts of the complex 
correction factor [#4, #5] 

The plots in Figure 1a are loss increase factors for the two models. Both have similar asymptotes, 
although the Hammerstad model demonstrates steeper transition from linear grow to steady 
region.  

Figure 1b shows real and imaginary parts of the complex correction factor. It helps to better 
understand the differences in the models’ behavior. Real parts have similar asymptotes, at low 
and high frequencies, but imaginary parts do not. At low frequency, the real and imaginary parts 
grow as , but at high frequency, the imaginary part decreases as for Cannonball-
Huray, and for Hammerstad.  

Limitations of the Hammerstad model become obvious when designers start to work at 
frequencies that correspond to the declining portion of the dependence. It turns out that the 
Hammerstad model settles too fast.	
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Figure 2. Trajectory plots representing complex factors [#3] over frequency range (a). Factors in resistive and 
inductive components of additional impedance, [#6] and [#7], (b) 

Trajectories in Figure 2a illustrate the behavior of the complex correction factors over frequency. 
Note considerable asymmetry for the Hammerstad correction factor. It approaches saturation 
level much faster than Cannonball-Huray. The non-causal versions of both models, if plotted, 
would show a straight line segment along real axis, from 0 to 1. 

Figure 2b shows multipliers (at skin impedance) creating additional resistive and inductive 
components due to roughness. Loss (resistive component) is defined by red curves [#6], the same 
as original real correction factors [#2] in Figure 1. Blue curves [#7] show the factors that apply to 
inductance. At low frequency, they grow as  and considerably exceed resistive, which grow 
as . A non-causal model would make both factors equal [#2] (red) thus causing considerable 
underestimation of internal inductance.	
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Figure 3. (a) Complex impedance contributed by metal roughness: resistive portion (red) and inductive (blue), [#8]. 
(b) An additional complex inductance, per [#9] in Table 1. For convenience, imaginary part of inductance is shown 
with opposite sign (as positive) 

Figure 3a illustrates the complex impedance added due to metal roughness. The resistive portion 
is shown in red; inductive is shown in blue. In both cases, the inductive component considerably 
exceeds resistive. The non-causal version suggests that both are equal and coincide with red. 
Both models provide similar asymptotes at low and high frequency. At low frequency, the 
inductive part of impedance grows as , while the resistive part grows as . At high 
frequency, they both grow as . However, Cannonball-Huray dependences are smoother 
(solid lines).  

Figure 3b shows complex inductance added due to metal roughness. It is what we used in K-K 
relations. The real part of inductance is shown by red, while the imaginary part of inductance 
with opposite sign is shown in blue. Note that the negative imaginary part of inductance, after 
multiplication on complex frequency, becomes positive loss resistance. When using a non-causal 
model, both real inductance and loss would coincide with the blue curve, making inductance 
vanish at low frequency. To some extent, a dramatic deficiency of inductance in the non-causal 
model remained unnoticed, due to the fact that inductance doesn’t produce large impedance at 
low frequency. Still, as we will show, this difference is noticeable and practically important. 

So far, we have only considered additional impedance caused by metal roughness. This 
impedance corresponds to in equation (3). But how significant is this contribution when 
impedance of the smooth metal is factored in?  

Let us analyze , which is an internal impedance of rough metal that includes both 
components. Here, however, we need to know one more parameter. When studying addition to 
impedance due to roughness, we assumed that the loss factor  in (4) is normalized, i.e.

. Now, let’s consider with factors varied as

. 

The results are shown in Figure 4, (a)-(d). It is interesting that inductive and resistive 
components of the impedance in Figure 4 (a), (c) are not equal, and do not exactly behave as

. They do so only at very low and very high frequencies.  But in the middle they have an 
inflection that happens at different frequencies for resistive and inductive components.  

Also, as we can see in Figure 4 (b) and (d), even in the combined impedance, the ratio between 
the inductive and resistive component is considerable and reaches factor 2-3. 
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Figure 4. Skin impedance modified by roughness (left). Ratio of inductive component to resistive (right). First row 
corresponds to Hammerstad, second to Cannonball-Huray 

IV. Causal roughness models and characteristics 
of transmission lines 

If we want to know how model causality, or non-causality, affects the characteristics of 
transmission lines, we need to consider more variables and parameters. In this section, we 
assume that per-unit-length (PUL) parameters of the single-conductor transmission lines are 
known, and will evaluate the effect of using a causal model on a number of important 
characteristics, namely insertion loss, phase delay, and characteristic impedance. This way, we 
will get general estimates of the error in a formal way. 

We start from the line’s propagation operator, and will try to simplify it, assuming that the 
resistive loss produces a smaller contribution than the inductive portion of impedance. Similarly, 
assume that dielectric loss produces a smaller conductance than that of the capacitance.  
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Therefore, the losses can be separated in the propagation operator as follows: 

.  (18) 

In (18) we assume that metal and dielectric losses,  and respectively, are purely real 
because the corresponding imaginary parts are absorbed by frequency-dependent PUL 
inductance and capacitance and . For brevity, we will omit frequency arguments in 
these variables.  

Thus, imaginary and real components in the power can be separated as follows: 

   (19) 

Magnitude of the propagation operator in (19) can be converted into insertion loss: 

.	 	 	 	 (20)		

If there is a loss correction factor in , it should be visible on the insertion loss plot as a 
multiplier to the skin resistance. As implied by #6 and #7 in Table 1, the resistive part  has a 
multiplier , whereas the corresponding contribution into an inductance gets 
the multiplier equal . From here, we can represent frequency dependent 

inductance as , where is a value of inductance at 
“infinity.”  

A non-causal roughness model applies an identical factor to both resistive and inductive 
contributions from skin impedance. That is, the resistive losses are similar to causal case, 
but inductive component is smaller because

. For convenience, we denote the common part of inductance that presents in both 

cases as . Then, inductance for causal and non-causal cases 

becomes and  respectively. 

Is the magnitude of the propagation operator affected by non-causality? 
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When computing insertion loss in (20), resistive loss is the same, regardless of model 
causality. What changes is inductance. It becomes larger when using a causal model. Larger 
inductance will reduce the effect of resistive losses and increase conductive losses. However, 
resistive losses dominate at low frequency, and conductive ones at high frequency. That’s why 
the model with causal roughness will show slightly less loss at low frequency but larger at high 
frequency. The variation of insertion loss can be estimated as: 

.  (21) 

The difference is very small because the multiplier changes its sign and remains close to zero. 

 

Figure 5. (a) IL plots for causal and non-causal models (red/blue), (b) the difference between IL dependencies: red – 
found directly from the extracted S-parameters, dashed blue – estimated. 

In Figure 5 a, b, we compare insertion loss from S-parameters generated with causal and non-
causal roughness models. Figure 5a shows that IL plots are practically identical. The difference 
is indeed very small, as seen in Figure 5b, and the sign changes at approximately 3GHz. Formula 
(21) gives very accurate estimate, shown by dashed line. 

Propagation phase and phase delay 
 
The first term in (19) describes the phase of the propagation function, which is . 
We can evaluate this value for causal and non-causal models at mid and high frequency 

(assuming that ) as
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. For causal model, we should take “+” in this expression. From 

here, the difference in phase becomes , and the phase 

delay: 

.     (22) 

 

Figure 6. (a) Contribution into phase delay from different types of losses; (b) the difference in phase delay due to 
roughness causality: simulated (solid) and predicted by (22) (dashed) 

 
Figure 6a shows contribution from different losses into the phase delay. A loss-less transmission 
line has constant phase and group delay. For a lossy line, an additional delay decreases with 
frequency and approaches the value defined by capacitance and inductance at infinity. For a 
given test case, the largest addition comes from impedance of the smooth metal (green), which 
dominates at low frequency. It decreases approximately as , as relative contribution of 
inductance due to skin effect.  
 
Next in importance comes additional delay caused by extra capacitance associated with dielectric 
loss (blue). This dependence practically repeats the real part of the Djordjevic-Sarkar equation 
for relative permittivity of dielectric.  
 
Contribution into phase delay from the causal roughness model (red) remains almost constant 
within wide range. At low frequency, we have increase of the factor . 
Multiplied by an impedance of the smooth metal, also growing at this rate, it makes a linearly 
growing contribution that practically stays in constant proportion with thus increasing an 
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equivalent inductance and phase delay. Only at a higher frequency, where blue curves in Figure 
2b become flat, does this factor settle and its relative contribution diminishes. 
 
For non-causal model (black), the multiplier at inductive impedance is by orders 
smaller, and practically not visible. At higher frequency, the red curve in Figure 2b approaches 
blue, because the imaginary part of the complex correction factor starts to go down and the lack 
of it becomes less visible. This is where contributions from causal and non-causal models 
converge. 
 
Figure 6b illustrates the difference in phase delay caused by using the causal model. Solid is 
simulated, while dashed is predicted by formula (22). The difference slowly decreases but 
remains considerable up to 50GHz. This is consistent with the red/black curves in Figure 6a. 
 
Characteristic impedance of the line 

At sufficiently high frequency ( ), we have

. We choose “+” for causal and “-” for non-causal 

model. By assuming that losses are small and expanding the expression under square root, we 
find the difference: 

.     (23) 

A more accurate estimate is possible if we don’t ignore losses but consolidate them in the 
denominator, as follows: 

.   (24) 

In this expression, the denominator depends on PUL conductance and impedance. It is mostly 
imaginary and grows linearly with frequency. Therefore, the surplus in characteristic impedance 
is mostly real, and decreases as . 
 
Figure 7 shows the difference in characteristic impedance caused by model causality. Red and 
blue curves are real/imaginary parts of this difference found from two simulations. Green 
illustrates real part of the difference found by the simplified equation (23). Dashed black and 
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cyan show real/imaginary parts of more accurate evaluation of this difference per equation (24). 
The latter perfectly matches numerical evaluation. 
 
At low frequency the nominator in (24) grows linearly, the same as the denominator, thus 
making the difference approximately constant. At higher frequency, peaks, then starts 
decreasing, thus making this difference smaller. In our particular case, the difference in 
characteristic impedance between causal and non-causal models is about 1% compared to ~50 
Ohm characteristic impedance. But depending on line’s parameters, it could be larger or smaller. 
 

	

Figure 7. The difference in characteristic impedance of the line due to causality of the roughness model 

V. Restoring causal correction factor from the 
loss factor given by a table  

Sometimes material vendors describe the loss correction factor by tabulated dependence 
given as (frequency, value) pairs. This dependence corresponds to #2 or #6 in Table 1; 

hence it is a difference between real and imaginary parts of the unknown complex multiplier
.  

Since should be a causal dependence, it’s tempting to represent it by a sum of simple 

rational components, for example as , then equate the table-given 

dependence, to the difference between real and imaginary parts of this representation 
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and then try to find the unknown coefficients. However, this approach fails in most cases 
because the task becomes ambiguous. Although we can restore a missing real (imaginary) part 
from a given imaginary (real) part, there is no single solution when restoring the two if we only 
know the difference between them.  

As shown in Figure 8a, the real and imaginary parts of the fitted approximation to remain 
uncontrollable outside the data range, even though the loss factor is fitted accurately (Figure 8b). 
Note that both multipliers in Figure 8b decrease above ~10GHz, which doesn’t match our 
expectations.  

	

Figure 8. (a) Given loss factor (black), real and imaginary parts of the fit (red/blue) whose difference approximates 
the loss factor; (b) fitted loss (red) and inductance (blue) correction factors 

The proper way is to work with complex impedance, for which we can find the real part. For 
example, a normalized surplus of PUL impedance can be represented as 

,  
assuming the complex factor , . Therefore the real 

part of the surplus impedance should interpolate values =

. Since is causal, it can be approximated e.g. by a rational fraction 
expansion of the form: 

.  (25) 

To simplify the task, we can choose a set of M (typically 15…30) real poles distributed 
linearly or logarithmically within the range of interest, and reduce the problem to finding the 
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coefficients only.  Note that since , we should require that therefore (25) 

becomes 

        .    (26) 

Obviously, we can find factors by equating real part of (26) to for a given 
set of frequency samples and solving the linear system e.g. by singular value decomposition 
method. For better accuracy, we can also normalize both parts of equation on . After solving 
equation for , unknown term can be restored as imaginary part of (26).  

Now, that we have approximation for real and imaginary parts and
, we can find and as 

, .     (27)  

Here, the functions and are fully defined by 

the chosen set of poles and found coefficients . The complex correction factor of interest 
becomes a combination of real/imaginary parts from (27). 

 

Figure 9. Given loss factor (black), real and imaginary parts of the restored complex correction factor (red/blue) (a). 
Loss (red) and inductance correction factors (blue), restored by fit (b) 
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Unlike Figure 8, here we observe more stable behavior of the correction factors while ensuring 
sufficiently accurate fit of the loss factor. 

VI. Cannonball-Huray Model 

Building upon the work already done by Huray [3], the Cannonball model is used to determine 
the radius and base area parameters in the original Huray model. As opposed to the stacked 
sphere approximation using scanning electron microscopy (SEM) data, the Cannonball model 
determines the exact sphere radius and flat base area based solely on roughness parameters 
published in manufacturers’ data sheets.  

Using the principle of stacking cannonballs, 14 uniform spheres, with radius (r), are stacked in a 
pyramidal structure, on a flat tile base, with an area Aflat, as illustrated in Figure 10  

 

Figure 10. Cannonball model showing 9 spheres on the base row; 4 spheres in the middle row; and a single sphere 
on top. Five pyramid lattice structures join all 14 sphere centers as shown. 

If we could peer inside the stack of spheres, and imagine 5 pyramids in a stacked lattice structure 
connecting the centers of all 14 spheres the radius can be easily determined by simple geometry 
and algebra.  

Given the total height of the cannonball stack is equal to HRMS, then from method described in 
[11], determining the radius of a single sphere (r), from 10-point mean roughness (Rz) parameter 
from data sheet, can be further simplified and approximated by 

      (CH-1) 

And therefore the area of the flat tile base Aflat is 

.      (CH-2) 
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Since the Cannonball-Huray model assumes 14 equally sized spheres stacked in a cannonball 
stack, and the nodule treatment is applied to a perfectly flat surface, the original Huray model is 
simplified and thus the power loss correction factor, KCBH(f), can be determined by [11]: 

      (CH-3) 

where r is sphere radius in meters; δ (f) is skin depth, as a function of frequency, in meters, Aflat 
is an area of a single square flat tile base in sq. meters. 

Case Study 

To test the accuracy of the model, measured data, from a CMP-28 Channel Modeling Platform, 
courtesy of [9], [10] was used for model validation. The extracted de-embedded S-parameter 
data was computed from 2 inch and 8 inch single-ended stripline traces.  

The printed circuit board (PCB) was fabricated with Isola [16]  FR408HR 3313 dielectric and 1 
oz. MLS Grade 3, controlled elongation reverse treated foil (RTF), from Oak-mitsui [17]. The 
data sheet and PCB design parameters are summarized in Table 2.  

Dielectric constant, Dk dissipation factor, Df, and Rz are the values as reported in the respective 
manufactures’ data sheets. An oxide or micro-etch treatment is usually applied to the copper 
surfaces prior to final PCB lamination. The etch treatment creates a surface full of micro-voids 
which follows the underlying rough profile and allows the resin to squish in and fill the voids 
providing a good anchor. Because some of the copper is typically removed during the micro-etch 
treatment, the published roughness parameter of the matte side was reduced by nominal 50 µin 
(1.27 µm) for a new thickness of 4.445µm, used for matte side correction factor analysis. 

Table 2 CMP-28 Test Board and Data Sheet Parameters 

Parameter Value 

Dk Core/Prepreg @  fo 3.68/3.62@1GHz 

Df Core/Prepreg @  fo 0.0087/0.0089 @ 1GHz 

Rz Drum side 3.048 µm 

Rz Before Micro-etch-Matte side 5.715 µm 
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Parameter Value 

Rz After 50 µin (1.27 µm) Micro-etch treatment -Matte 
side   4.445 µm 

Trace Thickness, t 1.25 mils (31.73 µm) 

Trace Etch Factor  60 deg taper 

Trace Width, w 11 mils (279.20 µm) 

Core thickness, H1 12 mils (304.60 µm) 

Prepreg thickness, H2 10.6 mils (269.00 µm) 

De-embedded trace length 6.00 in (15.24 cm) 

 

In [12], the authors observed an increase in phase delay proportional to roughness profile and 
dielectric material thickness. In [13] it was shown that the increased phase delay can be partly 
attributed to increased capacitance due to surface roughness. Because laminate suppliers’ data 
sheets typically report Dk as the value measured in a production environment, it does not 
guarantee the values are correct for design applications. In most cases the value published is 
lower that what is finally measured after the PCB has been fabricated. 

If the roughness of copper foil and dielectric constant from manufacturers’ data sheets are 
known, then the increase in effective dielectric constant (Dkeff) can be approximated by [13]: 

        (CH-4) 

where tdiel is the dielectric material thickness, Rz is the 10-point mean roughness, and Dk is the 
dielectric constant for as published in respective manufacturers’ data sheets. 

From Table 2 and by applying (CH-4), Dkeff  of core and prepreg due to roughness were 
determined as 
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A modified version of Mentor HyperLynx [14] was used to include causal/non-causal conductor 
models and Cannonball-Huray correction factors for matte and drum sides of the foil based on 
(CH-3). Corrected Dkeff for core and prepreg, based on (CH-4), were used while Df for core and 
prepreg remained unchanged from Table 2. 

Keysight ADS [15] was used for simulation analysis and comparison to measured data. 
Frequency domain results are presented in Figure 11. The left graph shows measured insertion 
loss of a de-embedded 6 inch stripline trace vs causal and non-causal models. As can be seen, 
there is virtually no difference between causal and non-causal model simulations. 

The right graph of Figure 11 shows measured phase delay vs causal and non-causal models. The 
non-causal model is consistent with phase delay compensation results published in [13]. But 
when the causal version of conductor roughness model was applied we observe that simulated 
phase delay matches measured phase delay almost exactly. This is remarkable, considering there 
was no additional tuning or curve of fitting parameters from manufacturers’ data sheet values. 

Figure 12 shows simulated vs measured results. Time delay transmission (TDT) impulse 
response is shown on the left graph while time domain reflected (TDR) impedance is shown on 
right graph. As can be seen, there is excellent correlation between causal models and measured 
data for both graphs. Also worth noting, the causal model has higher characteristic impedance 
and is a better fit to measured results compared to non-causal model as expected.  

 

Figure 11. Causal / non-causal vs measured insertion loss (IL) (left) and phase delay (right). 
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Figure 12. Causal / non-causal vs measured time domain transmission (TDT) impulse response (left) and time 
domain reflected (TDR) response (right). 

Conclusion 
In this paper, we presented a causal version of the roughness correction factor associated with 
certain loss models. Although the Hammerstad and Cannonball-Huray models have been 
considered in detail, the method described in this work also applies to other models, given by 
formulas or tables. 

We considered the impact created by causality of metal roughness on the characteristics of 
transmission lines. The effect it makes on insertion loss, phase delay, and characteristic 
impedance was described analytically as functions of PUL parameters. These formula estimates 
show perfect agreement with simulated results.  

We also demonstrated that phase delay and characteristic impedance considerably increased, 
compared to the case of using a non-causal, real-value correction multiplier. Simulated results 
appear in a perfect agreement with measured characteristics of the example case study. 

In the end, we note that causal and non-causal models of metal roughness are not just two 
versions of the same model. Causal models could be wrong in many ways, but at least they have 
a potential to correctly describe the relation between the current density and the electric field on 
metal’s surface, which is a causal function. A non-causal model, on the other hand, is always 
wrong, and it’s only a question of how large the error it brings into simulation. 

This article is an edited version of a DesignCon 2018 Best Paper Award winner. 
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Appendix A. Derivation of causal correction 
factor for Huray-Cannonball model 
Using the expression (13) describing loss correction factor together with (6), we find the resistive 
part of the additional impedance due to metal roughness be 

.     (A1) 

This must be a real part of the complex frequency-dependent impedance, which is assumed 
causal. At this point, we’d like to restore unknown imaginary part of the complex impedance by 
applying K-K integral transformation. Unfortunately, these integrals are defined for the functions 
that disappear at infinity, but (A1) grows asymptotically as . One way to remove this obstacle 
is to consider an equivalent complex inductance, defined by (11). When we divide complex 
impedance on complex frequency, a real part of the first is converted into imaginary part of the 
complex inductance: 

.    (A2) 

Since complex inductance is a causal function, too, and disappears at infinity, we can apply K-K 
integral of the form 

   (A3) 

to restore unknown real part of the causal function from known imaginary. Substituting (A2) into 
this integral, we get 

.  (A4) 

With , (A4) becomes , whose integrand can be 

represented as 

. 

By substituting , integral from the first summand in brackets becomes 
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. 

Second integral yields . To calculate it, note that the odd part of 

the integrand gives zero: , and remaining integral may be calculated 

using residues: 

. 

Here, integrals at small semicircles around cancel each other, so we consider the only 
remaining pole in the upper half-plane. 

Finally, collecting the pieces of the integral together, we get , which can 

be simplified into 

.    (A5) 

From (A2), (A5), we compose the complex inductance as 

.   (A6) 

As a frequency response of a causal function, (A6) should be a real function of complex 
frequency . To find this form, we use . Since integral is taken over positive 
half axis, we assume that . Therefore, square roots are related as 

hence we should replace by . With these 

substitutions in (A6) the complex terms vanish and after a few elementary transformations we 
arrive to: 

.     (A7) 

From (A7), we can find complex impedance, added due to metal roughness as 
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.   (A8) 

Finally, considering (A8) together with (2) and (7), we find the complex roughness correction 
factor as 

.      (A9) 

This result agrees with the one from [6].	
	

Appendix B. Derivation of causal correction 
factor for Hammerstad model 
The main steps are same as in Appendix A for the Cannonball-Huray model. From (16) and (6), 
we get 

.     (B1) 

From where imaginary part of the additional complex inductance becomes: 

.   (B2) 

With that, integral in K-K relation acquires the form: 

   (B3) 

where parameter equals 1.	It is convenient however to find the derivative of (B3) by this 
parameter first: 

. 

This integral may be taken analytically, but the easier way is to use a contour integral in the 
upper half-plane, which results in 

.     (B4) 

Now we need to integrate it by α. With , integral from the first summand in (B4) becomes 

. 
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This integral can be found using the result e.g. from H. Dwight, Table of integrals and other 
mathematical data, McMillan, 1961: 

. 

In our case and , therefore 

. 

Integral from the second summand in (B4) is simple:  

. 

Now, substituting , and collecting the pieces together, we get: 

 .  (B5) 

With that, the complex addition to inductance due to roughness becomes 

      .  (B6) 

Similar to what we did in Appendix A, by substitution and , we convert 

(B6) into real function of complex frequency: 

 = 

.   (B7) 

Then, find complex impedance 

   (B8) 

And, finally, the complex factor 

.  (B 


