

Designing Power For Sensitive Circuits

Steve Sandler, Picotest steve@picotest.com +1-480-375-0075

What are sensitive circuits?

Many low power circuits are hypersensitive to power supply noise.

Examples of hyper-sensitive circuits include clock oscillators (XOs), low noise amplifiers (LNAs), phase locked loops (PLLs), mixers and precision voltage references to name just a few.

Sensitivity to power supply noise

HARMONIC BALANCE

HarmonicBalance

HB1

Freq[1]=100 MHz

Freq[2]=Fn kHz

Order[1]=1

Order[2]=15

Var Eqn VAR VAR1

Fn=500

 $BB = -65 \{t\}$

Defining Sensitivity

Not all sensitive circuits are sensitive

Noise Density 3 Voltage Regulators

Date: 29.JUN.2017 03:07:47

Switching Regulator Noise Density

The switching regulator noise density is a little above $1 \text{uV} / \sqrt{Hz}$ in the highlighted frequency range

Date: 29.JUN.2017 03:07:47

Phase Noise 3 Voltage Regulators

Assessing the Damage

Simplest Noise Filter

Regulation and noise are not the same thing and counterintuitively they oppose each other

How much voltage can you give up?

$$R1 = \frac{100mV}{Idc} = \frac{100mV}{39mA} = 2.60\Omega$$

$$C1(dB, f) = \frac{0.159 \cdot \sqrt{e^{0.2303 \cdot dB}} \cdot e^{-0.115 \cdot dB} \cdot \sqrt{e^{0.2303 \cdot dB} - 1}}{R \cdot f}$$

$$ESRmax = \frac{0.707 \cdot R}{e^{0.115 \cdot dBmax} - 1}$$

Determining the Capacitor

$33uF/30m\Omega$ ESR + 2.4Ω Filter

Unexpected Noise – 2.8MHz POL

Why The Low Frequency Noise?

The modulation noise is accounted for

Despite the 2.8MHz switching frequency it's the 10kHz range that defines the filter

About Ferrite Beads

$$L_{max} = 0.5 \cdot C \cdot R^2$$

IF R approaches zero then NO INDUCTANCE ALLOWED

$$ESRmax = \frac{0.707 \cdot R}{e^{0.115 \cdot dBmax} - 1}$$

100 MHz

Frequency

1 GHz

10 Ω

1 MHz

10 MHz

10 GHz

-- 742792023

0.3, 1.3 and 2.30hm resistance

"RF" Ultra-Low-Noise Options

The precision ultra-low-noise voltage regulator offers precision in the output voltage and low noise

BUT

Count the capacitors!

Is this better or just different?

Precision voltage vs ultra-low noise

TYPICAL APPLICATION CIRCUIT

Figure 1. Regulated 3.3 V Output from 3.8 V Input

Higher value caps are generally better than lower value caps

Top Tips

Low current bias also needs to be filtered.

Include phase noise and jitter in your simulations

HB.freq[1]	
13.40391 MHz	

noisefreq	f_low
10.00 Hz	-109.939
noisefreq	f_10
10.00 Hz	-109.939
noisefreq	f_100
100.0 Hz	-137.978
noisefreq	f_1k
1.000 kHz	-157.073
noisefreq	f_10k
10.00 kHz	-158.824
noisefreq	f_100k
100.0 kHz	-158.711
noisefreq	f_high
1.000 MHz	-159.195

Not all regulators are created equal

Consider all the ways noise gets in

Radiated noise

Watch the coaxial cables and power interconnects also

Thanks for Attending this Session!

In this session I shared

- How to determine the circuit sensitivity to power supply noise
- How to choose the best voltage regulator
- How to design an optimum power supply noise filter
- A few of my top tips for designing power for sensitive circuits

Connect with me on LinkedIn or via email at Steve@Picotest.com

Learn more at www.picotest.com/blog