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Abstract 

Metal roughness is one of the largest contributors to signal loss and dispersion, therefore any design 

process must use accurate and physically meaningful models of the rough metal. Recent development in 

this area revealed a deficiency of the existing models related to their non-causality. Papers [3] and [4] 

proposed causal versions of roughness correction factors for Cannonball-Huray and Hammerstad 

models. However, these solutions cannot cover a wide class of different metal profiles arising in modern 

fabrication technology. In this paper we propose a method of enforcing causality of the models given in 

a form of a table or general functional dependence by way of fitting with a set of causal functions, 

specifically selected for metal roughness approximation. This method is applied to some standard 

roughness models (Groiss, Hemispherical, Bushminsky), and custom dependences found from 

measurements. 
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I. Introduction 

PCB design and signal integrity analysis is not possible without considering loss and dispersion caused 

by materials: dielectric and metal. There exists a consensus about using physically justified causal model 

of dielectric, such as Djordjevic-Sarkar [1] or its modifications. However, designers realized only 

recently [2, 3, 4] that causal models of rough metal surface are no less important. For example, [3] 

proposed a causal version of Huray’s roughness model and showed that it increases the group delay of 

transmission lines and allows better agreement between simulation and measurements. In [4], the 

authors proposed a mathematical procedure of converting non-causal frequency-dependent loss 

correction factor (often called roughness correction factor) into a causal complex-value correction 

multiplier, which was illustrated on Cannonball–Huray and Hammerstad models. It was shown that for a 

given resistive loss, the causal model creates considerably larger internal inductance, which increases 

both characteristic impedance and phase/group delay of transmission lines. 

However, the results and methods considered in [3, 4] solve a relatively narrow class of cases when loss 

correction is described by simple analytical functions for which Kramers-Kronig integral transformation 

exists in a closed form. Even some “standard” roughness models, like Hemispherical, Groiss and 

Bushminsky don’t belong to this class. On the other hand, rapidly changing PCB foil fabrication 

technologies, including electrodeposit and roll-annealing methods, used for different weights an 

thicknesses, create very different grain structures that require a variety of different roughness models. 

Oftentimes, the function that describes an increase of loss due to metal roughness is not derived from 

theory, but is measured post-fabrication on a number of manufactured test structures. The result comes 

in a form of a table (factor versus frequency), or functional approximation that fits measured points. 

Such data cannot be used in simulation tools for a number of reasons. First, it is incomplete, because 

loss increase is just one projection of the roughness phenomena that characterizes losses, but not an 

internal inductance of the metal. Second, measured data usually ranges from hundred MHz to tens of 

GHz, but simulation tools need it from DC to about a hundred GHz, as dictated by frequency and time 

domain analysis resolution and duration. 

In practice, to make simulation possible, we need to restore a complete continuous causal complex-value 

function of frequency that defines a multiplier to the impedance of a smooth metal so that their product 

correctly describes the complex impedance of the rough metal. Interpolation and extrapolation are 

methods of restoring “complete” dependence with desirable properties from incomplete or sampled data. 

Rational fit is an example of interpolation that creates a continuous causal function from a set of 

frequency points, restores missing imaginary/real part of the dependence from a given real/imaginary 

part. Unfortunately, rational fit doesn’t work well for the functions that describe metal roughness. With 

smooth metal impedance factored in, the target dependences require fractional power(s) of frequency to 

accurately describe their asymptotic behavior. Therefore, one of the efforts made in this paper was to 

find a set of causal basis functions that provide the most compact and accurate representation of the 

complex roughness correction factor. To allow the desired asymptotic behavior at low and high 

frequency, we’ve chosen irrational functions that contain fractional orders of Laplace operator. We used 

the proposed functional basis to build causal models for Groiss, Hemispheric, and Bushminsky 

roughness correction factors, and for a number of measured loss dependences. 



The paper is organized as follows. Section II discusses the necessary prerequisites and outlines the 

procedure that applies to roughness dependence given either analytically or by sampled data. In Section 

III we explain why we need fractional power(s) of complex frequency in our approximation and why 

such functions make a legitimate set of causal basis functions. We also propose basis functions that 

work best for the internal complex inductance caused by metal roughness. Sections IV to VI describe the 

fitting procedure which produces causal versions of the Groiss, Hemispheric and Bushminsky models, 

and Section VII explains how we can build causal model from measured data. Section VIII compares all 

five standard models, including causal Cannonball-Huray and Hammerstad found earlier in [4], by using 

them in a lossy stripline simulation. 

II. Roughness correction factor: definitions and how to find it 

from the loss correction factor 

Until recently, most of the sources studying metal roughness used the term “roughness correction factor” 

[5, 6, 7], by which they meant an increase of metal resistance due to roughness: 

( ) ( ) ( )rough smoothR k R   .    (1) 

 Here,   is the angular frequency, ( )smoothR  is frequency-dependent resistance of the smooth metal, 

which – except for very low frequency – demonstrates square root dependence ( )smooth sR R  , in 

which sR  is a coefficient that depends on physical characteristics of the metal (conductivity and magnetic 

permeability) and the geometry of the conductor, and ( )roughR  is the resistance of the rough metal. 

Factor ( )k  starts from 1 (no roughness effects at low frequency) and increases with frequency, 

sometimes reaching 5-7 and beyond. However, in modeling practice, this factor was often applied to 

both real and imaginary parts of the complex impedance as follows 

( ) ( ) ( )rough smoothZ i k Z i   ,    (2) 

thus increasing resistance and internal inductance of the metal in the same proportion. We realize now 

that this is a mistake, because frequency-dependent real function ( )k  cannot be causal, and so it makes 

the complex impedance of the rough metal non-causal, too. As we know [4], expression (2) considerably 

underestimates the increase of internal metal inductance. 

A proper way is to assume that there exists a causal complex correction factor ( ) ( ) ( )r iK i K iK     

that can be found from the known “roughness correction factor” ( )k  , for which a better name would 

be either resistance or loss correction factor. With complex factor in (2), we get 

( ) ( ) ( ) ( )(1 )rough smooth sZ i K i Z i K i i R               

  [ ( ) ( )] [ ( ) ( )]r i s r i sK K R i K K R        .   (3) 

As follows from (3), the resistance of the smooth metal is increased by factor ( ) ( )r iK K  , but the 

internal inductance is increased by factor ( ) ( )r iK K  . In [4], they are called respectively loss 



correction factor (LCF) and inductance correction factor (ICF). They both are defined from 

components of the complex correction factor ( )K i  (CCF). 

What is given to us is a factor ( )k  in (2), which is the same as ( ) ( )r iK K  in (3). How can we restore 

a complex dependence if we know the difference between its real and imaginary parts? The solution is 

to define a causal function in which ( ) ( )r iK K  comprises either the real or the imaginary part, from 

which the missing part could be restored. For example, by dividing complex impedance (3) by i , we 

get the complex inductance, which must be a causal function, too: 

( ) ( ) / ( )rough smoothL i Z i i    [ ( ) ( )] [ ( ) ( )]s s
r i r i

R R
K K i K K   

 
   . (4) 

It turns out that the imaginary part of the complex inductance is known, because ( ) ( ) ( )r iK K k    . 

Therefore we only have to restore the missing real part. In [4], we restored it by Kronig-Kramers 

integral transformation, now we are going to do it by fitting. Once the complex inductance is found, it’s 

possible to find the complex impedance and therefore the complex roughness correction factor. 

For convenience, we can introduce frequency-dependent multipliers without initial offset. Factor

0 0 0( ) ( ) 1 ( ) 1 ( ) ( ) ( )r i r iK i K i K iK K iK            starts from zero, and defines an additional 

complex impedance added by metal roughness as 
0( ) ( ) ( ) ( )rough smooth smoothZ i Z i K i Z i     . 

III. Fitting the complex inductance: problems and solution 

Before we dive into the specifics of particular roughness models, let’s see why traditional ways of 

fitting, e.g. rational fitting, cannot be used for restoring the complex factor ( )K i from the imaginary 

part of the complex inductance (4). Then, we’ll choose more appropriate basis functions and use them to 

find the fit.  

Rational fit, why it doesn’t work? 

The first idea would be to try rational fitting using a set of predefined real or complex poles. For 

example, by arranging real poles
mp logarithmically within frequency range of interest, we can form and 

solve a system of N linear equations with respect to coefficients
mA , 1...m M  

1

1
[ ( ) ( )]

1 /

M
m

r n i n

m n m n

A
imag K K

i p
 

 

 
   

 
 , 1...n N .  (5)  

However, we’ll show that this method doesn’t work as expected. Figure 1a represents imaginary part of 

the inductance for the normalized Groiss, Hemispherical and Bushminsky roughness models (red, green 

and blue curves respectively). The dashed curve is the imaginary part of a single rational term with pole

1p  . All imaginary parts are taken with opposite sign to make them positive and allow logarithmic 

scale along vertical axis. 



  
(a)                                                                                          (b) 

 
(c)                                                                                          (d)              

Figure 1. Log/log plot of the imaginary part of the complex inductance for Groiss (red), Hemispherical (green) and 

Bushminsky (blue) roughness models, and a single rational pole (dashed black) (a). Fitting complex inductance of Groiss 

model (blue) by a set of 50 real poles (green, red), (b). Fitting error (c), and the restored real/imaginary parts of the complex 

correction factor (d) 

 

The asymptotic behavior of a single pole in Figure 1a considerably differs from other curves. It starts 

growing linearly with frequency, but after the peak decreases in inverse proportion to it. The imaginary 

parts of the inductance derived from standard roughness models initially grow with very different rates 

(or even don’t grow), but then they all decrease as 1  . Despite the difference in asymptotic behavior, 

we hope to achieve accurate approximation by taking sufficiently many poles in (5). For example, fitting 

the normalized complex inductance ( )roughL i for the Groiss model with 50 poles gives us, though not 

perfect, but reasonable accuracy (Figure 1b). The error, defined as the difference between the given and 

fitted imaginary parts is shown in Figure 1c. It doesn’t exceed 1e-4. Indeed, we were able to fit loss 

correction factor accurately (Figure 1d, green). However, the real and imaginary parts of the restored 

complex correction factor (CCF) on the same plot don’t look correct. We expected them to flatten at 

high frequency like the loss correction factor, but instead they are both going down. Why? 

Remember, that the loss correction factor (3) is the difference between the real and imaginary parts of 

CCF. If we modify the real and imaginary parts of CCF by adding the same function, the difference 

won’t change. Since we found our solution by fitting, such addition must be a causal function. What 

causal function’s real and imaginary parts are identical? It could be anything containing the terms i . 

In other words, fitting with rational poles is “blind” to such errors if they appear in CCF, because (a) it is 



basically unable to accurately represent fractional powers of complex frequency, and (b) even a tiny 

error that contains i will destroy the asymptotic behavior of CCF.    

 Fitting with fractional powers of complex frequency 

From  imag ( )roughL i dependences, shown in Figure 1a, we see that the rate of growth could be 

variable, starting from extremely steep, then flattening, before the function turns down and decreases as

1 i . To describe such behavior, the functions need to contain fractional powers of frequency, 

possibly different fractional powers, to represent a variable growth rate. However, defining such 

functions is not an easy task. We need to answer the following questions: (a) what fractional powers of

( )s i  make causal functions, (b) what functions in s make passive contribution into ( )roughL s  (by 

keeping its imaginary part negative, which corresponds to positive loss in complex impedance), and (c) 

how to ensure “delay-causality” of the model, meaning that the real part of the internal inductance added 

due to roughness must remain non-negative (i.e. roughness may only increase the delay of the 

conductor). 

Are fractional powers of ( )s i causal? 

Fortunately, the answer is yes, and it follows from fractional calculus [8, 9], a remarkable by not widely 

known branch of mathematics, and from the nature of Laplace transformation. In particular, fractional 

calculus operates with fractional orders of integral and differential operators that exist for some “proper” 

functions. Let’s take the function ( )f x that exists for all 0x  and define its first-order integral as

0

( )( ) ( )

x

Jf x f v dv  ; integral of the second order as 2

0 0

( )( ) ( )

x v

J f x f u du dv
 

  
 
  , and so on. The Cauchy 

formula [10] is known to compress multiple integrations into a single integral as

1

0

1
( )( ) ( ) ( )

( 1)!

x

n nJ f x x v f v dv
n

 
  . The latter could be generalized onto non-integer powers by 

formally replacing the integer parameter n with real which makes 

  1

0

1
( )( ) ( ) ( )

( )

x

J f x x v f v dv 



 
  .    (6) 

Such generalization works for the functions for which the integral (6) exists for any 0x  . If the 

function ( )f v  is zero for all 0v  , it can be considered as an impulse response of a causal system. Then, 

integral (6) will be zero for all 0x  , thus describing a causal system, too.  

Fractional derivatives can be defined as operations inverse to fractional integrals. As we know, 

multiplication or division of the Laplace transform ( )F s  by complex frequency s , is equivalent to 

differentiation or integration of the original, respectively. If fractional integrals and/or derivatives exist, 

and the original “time domain” function ( )f t  is causal then ( )s F s and ( )s F s
, and the respective 

Laplace operators s and s 
should represent causal functions as well. 



If s ix and 0x  then the fractional order operaor is 2 (cos sin )
2 2

i

s x e x i


    
   . Realness of a 

causal function implies that
*

*( )s s     , hence we can use (cos sign( )sin )
2 2

s x i x
  

  for 

positive and negative x . Figure 2 shows the trajectories of s on the complex plane (a), and the 

dependency of the imaginary parts s on frequency (b). The trajectories (a) are straight lines indicating 

that the ratio between real and imaginary parts depend on power, but not on frequency. Figure 2(b) 

implies that the steepest dependency can be achieved with power close to 1. We do not consider cases 

with 1  because real part of the complex inductance must remain non-negative. 

 
(a)                                                                 (b) 

Figure 2. Fractional powers of complex frequency s . Trajectory on the complex plane (a) and dependency of imaginary 

parts (b) 

 

If fractional powers s are causal functions, then many analytical functions of complex argument ( )f z  

create causal functions of the form ( )f s . The exceptions are those for which inverse Laplace integral 

doesn’t exist. 

 

Choosing the appropriate basis functions 

Of course, complex inductance (4) must be finite and decreasing to zero at high frequency, because of 

the multiplier 1  . To make this possible, we suggest using formula 

 ( , ) 1 arctan( )y s s s   ,   (7) 

that contains Laplace operators of fractional order (0,1) . Inverse Laplace transform of (7) can be 

represented by a convolution of fractional powers of time t  and the term 
1

, ( )t E t 

    , where , ( )E z   

is Mittag-Leffler function. Since all components of the convolution are identically zero for 0t  , so is 

the time domain equivalent of (7).  



By increasing , it is possible to make the imaginary part grow steeper, however, it will be decreasing 

faster after its peak as well. Figure 3 shows a set of functions (7) with different values of .  

 

  
(a)                                                                                  (b) 

Figure 3. The proposed basis functions (imaginary part is negated to allow logarithmic plot). Plot (b) is a zoomed version of 

(a), to show behavior near the peak 

The slope of the (negated) imaginary part at very small frequency is approximately 2 , or factor 
210 

growth per decade. For 1  the sign of the imaginary part oscillates and the function cannot be used as 

a fit basis. However, the useful feature of these basis functions is the fact that just before the peak, the 

imaginary part becomes increasingly steep when approaches to 1. This seems to be useful when 

representing the Groiss and Hemispherical models (see Fig.1a). To model a curve with increasing 

steepness, it is possible to combine the components with higher power (at lower frequency) with 

increasingly smaller powers thereafter, while keeping them above (or equal) 0.5. 

With the new basis functions, our fitting problem reduces to equation:  

1

( ) Im arctan

mmM
m

im m

m m

p s
L x A

s p





   
    

    
 .   (8) 

The goal is to find a set of coefficients mA for a chosen set of “poles” mp and associated powers m . As 

before, the pole frequencies mp can be distributed logarithmically in the frequency range of interest. The 

powers should gradually decrease from e.g. 0.98 to 0.5 as we go from low to high frequency poles. It is 

also possible to assign several components with identical poles, but different powers; accurately found 

solution - e.g. by singular value decompositions methods - will result in a proper combination of them.  

IV. Building Causal Groiss Roughness Model 

As shown in [11, 5], the normalized roughness correction factor of the Groiss model (or loss correction 

in the proposed terminology) has the form: 
1.6

g ( , ) exp
2

s
i s

i

F



  
    

   

,  (9) 



where i is the roughness bump size (rms), and 1/2( )s f    is the skin depth. As skin depth decreases 

with frequency, this factor changes from zero to 1. Therefore it is a normalized factor describing an 

additional loss due to metal roughness. 

By introducing normalized frequency 22 ix   , we get: 

0.8

0 ( ) exp( 1/ )gK x x  . (10) 

 
(a)                                                                                          (b) 

 
(c)                                                                                          (d)              

 
(e)                                                                                            (f)              



 
(g)                                                                                           (h) 

Figure 4. Restoring the causal Groiss model. Normalized loss correction factor in log scale (a); imaginary part of the 

additional complex inductance (b); fit of the complex inductance together with restored real part (c); restored complex 

inductance with “natural” vertical scale (d); absolute fitting error for the inductance (e); restored CCF (thin red/blue), loss 

correction factor, original (green), and its fit (dashed black), and inductance correction (magenta) (f); trajectory of the CCF 

(g); and absolute error approximating loss correction factor (h) 

As explained in Section II, the loss correction factor (LCF) 
0 ( )gK x equals the difference between real 

and imaginary parts of the unknown complex correction factor. LCF is shown in Figure 4a. It is 

practically zero below
2 110 ...10x   but then steeply goes up and flattens at 1. The imaginary part of the 

normalized complex inductance (b) is LCF divided by x and taken with sign minus. Figure 4c shows 

the imaginary part of the inductance, computed (blue) and fitted (green) by solving equations (8). For 

convenience, both are shown in logarithmic scale, which requires opposite sign. The red curve is the real 

part of the inductance restored by fitting. Figure (d) shows them with conventional sign and scale; we 

can see that the real part of the inductance peaks at about 0.3x . In this respect, it is similar to 

Hammerstad model [4]. The fitting error for the complex inductance is shown in (e): it remains below 

1e-15. Multiplication of the normalized complex inductance by ix gives us the complex impedance 

(normalized), added due to roughness. By dividing the result by 2ix (with factor 2 because in (3) we 

used (1 )i instead of (1 ) / 2i ), we find the complex correction factor (CCF), (f). The real and 

imaginary parts of CCF grow initially as x thus making the difference, i.e. loss correction factor, 

practically zero. However, an inductance correction factor (magenta) equals the sum of the real and 

imaginary parts of CCF, and is way larger than the loss factor. We observe a perfect fit for the loss 

correction factor (black versus green). The trajectory plot of the CCF (imaginary part versus real) is 

shown in (g), and the absolute difference between the original loss correction factor and its restored 

version is in (h). The error remains at about 1e-15, which is close to the limit for double precision. 

V. Causal Hemispherical Roughness Model 

The normalized form of Hemispherical “roughness factor” is given in [5, 6, 7] as: 

 
2 2

2 3 1
( , , ) Abs Re ( (1) (1))

4 2

s
h i s

i

F r k
r k

 
  



  
    

  
, (11) 

In which the negative values at low frequency should be replaced by zero. In (11), s is skin depth, ir  is 

the radius of hemispheres approximating metal profile, and 0 0/ ( )     . Factor k is inverse to 

wavelength in dielectric, and proportional to frequency. The complex frequency-dependent components



(1), (1)  are defined in [6, 7]. Skin depth decreases as 1 f , and the multiplier in the brackets 

decreases as 21 f . However, the overall growth occurs due to proportionality 3(1) f . 

It is difficult to make the Hemispherical model a function of a single normalized frequency, because 

parameters and k depend on relative permittivity of dielectric, which is also frequency-dependent. For 

that reason, we’ll build the dependence using the method defined in [7] assuming 3.7  and 1ir m , 

then rescale it when comparing to normalized models of other types. Another problem here is that the 

model (11) diverges at high frequency due to fast growing term (1) . For the purpose of fitting, we need 

the dependence to be defined over a wide range, but asymptotically approaching a finite value at high 

frequency. This is achieved by extrapolating the dependence above 100GHz, as shown in Figure 5a. 

It is also necessary to “pre-process” the data to remove the discontinuity of derivative at cut-off 

frequency (around 3GHz), because we cannot accurately approximate such dependence with smooth 

causal functions (8). Despite smoothing, an initial rising portion remains the “steepest” for higher 

derivatives, and we may need to add more poles in its vicinity to achieve better accuracy.   

  
(a)                                                                                          (b) 

 
(c)                                                                                          (d)              



 
(e)                                                                                            (f)              

 
(g)                                                                                           (h) 

Figure 5. Loss correction factor found by formula (11) (red), and modified by extrapolation at high frequency and spline 

smoothing at cut-off (blue) (a); modified loss correction factor in log scale (b); imaginary part of the complex inductance (c); 

complex inductance fitted (d), with its real part restored (d); complex inductance in “natural” scale (e); restored complex 

factor, loss and inductance correction factors (f); trajectory plot of the complex factor (g); and absolute error when fitting loss 

correction factor (h) 

 

Figure 5b depicts the normalized loss factor in logarithmic scale, as a function of normalized frequency (

1x  corresponds to 20GHz). Figure 5c shows the imaginary part of the complex inductance, 5d shows 

the same curve in logarithmic scale, negated (blue) with its fit using formula (8) (green), and the 

restored real part of the complex inductance (red). As we see, the fitting accuracy is about 1e-4. It’s 

much worse than what we achieved for the Groiss model. The error is caused by the non-smooth 

behavior of the original dependence, which can be eased by spline interpolation of the cut-off region, but 

not remove discontinuity of higher derivatives. By making the interpolating interval wider, we may 

reduce fitting error, however what we get may not be exactly the dependence we need. The complex 

inductance in natural scale (Figure 5e) demonstrates the prominent peak of the real part, which 

corresponds to the point of discontinuity. However, the exact magnitude of this peak depends on the 

“sharpness” of the take-off area after spline interpolation. Figure 5f shows the restored complex 

correction factor (red/blue), loss correction, original (green) and fitted (black), and inductance correction 

factor (magenta). Figures 5g and h demonstrate the trajectory of the complex factor and fitting error for 

the loss correction factor. Apart from considerably larger error, the results for Hemispherical model are 

similar to Groiss. For example, the real and imaginary parts of the complex correction factor remain 

practically equal for 0.1x  . In this region, we don’t observe resistive loss yet, however, the inductance 



added due to metal roughness is already considerable. Also, since the real and imaginary parts of CCF 

remain equal, the initial portion of the trajectory is practically a straight line.  

VI. Causal Version of Bushminsky Roughness Model 

The normalized form of Bushminsky “roughness factor” is given in [5] as: 

( , ) tanh
1.8

i
B i s

s

F 


 
   

 
,  (12) 

where the parameters are the same as in the Groiss model (9). By choosing normalized frequency

2200

81
ix   , we turn (12) into the normalized loss correction factor 

0 ( ) tanh( )BK x x .  (13) 

It is shown in Figure 6a. Now, let’s follow the same procedure as we did for the Groiss and 

Hemispherical model. Imaginary part of complex inductance is   0imag ( ) ( ) /BL ix K x x  . 

Remarkably, at low frequency we get  imag ( ) 1L ix   (see Figure 6b), as follows from the fact that for 

small x tanh( )x x . With non-zero imaginary part at low frequency, the real part has to grow 

unlimited towards DC, approximately like log( )x , which is illustrated by Figure 6c. The fitting error is 

reasonable (below 1e-6) but as expected, it increases toward low frequency as the function itself. The 

restored real and imaginary parts of the complex factor (CCF) are shown in Figure 6f, together with the 

computed inductance correction factor and the fitted LCF. Unlike the Groiss and Hemispherical models, 

the real and imaginary parts of CCF are separate from the start, because LCF doesn’t have an initial zero 

pedestal. This model also has the smallest imaginary part of CCF which brings the LCF and inductance 

correction factor closer to each other. Hence, non-causal version of Bushminsky model appears “less 

non-causal” than the similar dependence for Groiss or Hemispherical. The trajectory plot, Figure 6g, is 

tilted towards higher resistive losses, because due to unbounded inductance at low frequency, the factors 

grow and decay with different speeds. The overall fitting error for LCF is below 1e-9.  

   
(a)                                                                                          (b) 



 
(c)                                                                                          (d)              

 
(e)                                                                                            (f)              

 
(g)                                                                                           (h) 

Figure 6. (a) Loss correction factor described by (13) in logarithmic scale; (b) imaginary part of complex inductance; (c) 

complex inductance fitted in log scale, real (red) and imaginary (blue); (d) complex inductance, natural scale; (e) absolute 

error when fitting complex inductance; (f) restored real and imaginary parts of the complex factor (red, blue), loss (green) and 

inductive (magenta) correction factors; (g) trajectory plot of the complex factor; (h) absolute error when fitting loss correction 

factor 

 

VII. Extracting Causal Roughness Model from Measured Data 

The main approach stays the same: find the complex inductance added due to metal roughness by 

solving equations (8). However, we have to do some additional steps to find the frequency-dependent 

loss factor from given S-parameters. We’ll use a measured and de-embedded 6-inch stripline model, 

same as in [4]. The two-port S-parameters are shown in Figure 7a. 



  
(a)                                                                                          (b) 

Figure 7. (a) Measured & de-embedded S-parameters; (b) extracted PUL resistance times T-line length (blue), “smooth” 

metal resistance (red), and additional resistance added due to metal roughness (green) 
 

A script was used to find the propagation operator and characteristic admittance from measured S-

parameters, and then extract the bulk per-length impedance (BPLI, which is PUL impedance times the 

line’s length), and the line’s BPLI conductance. Figure 7b shows the real part of such impedance (blue 

curve). The imaginary part of the impedance is dominated by a large contribution from external 

inductance therefore is not very convenient for roughness characterization. Since the dependence starts 

from tens of MHz, it is possible to find such value sR that makes the curve describing 
sR f (shown red) 

tangent to BPLI at low frequency. The difference between them (green) is an additional resistance added 

due to metal roughness. The ratio between this additional resistance and
sR f gives us a loss factor

0 ( )K f that doesn’t have an initial offset. 

 
(a)                                                              (b)                                                               (c) 

Figure 8. (a) Found loss factor, raw (red) and interpolated (blue); (b) raw (red) and interpolated/extrapolated loss factor 

(blue); (c) wide-band loss factor versus normalized frequency, logarithmic scale 

 

The 0 ( )K f  we found is shown in Figure 8a (red), together with its interpolation (blue). To proceed with 

fitting, we need to extend the dependence until it settles at a certain level, which is shown in Figure 8b 

(blue curve). Finally, we make it a wideband function of a normalized frequency, as shown in Figure 8c. 

The following steps are practically identical to those of standard models. 



  
(a)                                                                                          (b) 

   
(c)                                                                                          (d)              

Figure 9. (a) Imaginary part of inductance (blue, shown as positive), its fit (dashed green) and restored real part of inductance 

(red); (b) restored complex inductance, natural scale; (c) restored real and imaginary parts of the complex factor (red, blue), 

loss (green) and inductive (magenta) correction factors; (d) trajectory plot of the complex factor 

Figure 9 illustrates the process of fitting. By dividing the loss factor by the square root of frequency and 

taking the result with opposite sign, we find the imaginary part of the internal inductance added due to 

metal roughness. This is shown in Figure 9a (blue), for convenience with opposite sign. Fitting (8) 

approximates the imaginary part of inductance (dashed green) and restores its real part (red). The 

absolute fitting error doesn’t exceed 1e-4. Figure 9b shows the restored complex inductance with natural 

scale and sign, same denotations. The restored complex correction factor (CCF) is in Figure 9c (red and 

blue curves), magenta and green are the inductance and loss correction factors, respectively. Figure 9d 

shows the trajectory of CCF on the complex plane as frequency changes from zero to infinity. This CCF 

is not normalized so its real part goes up to ~3.23. 

VIII. Comparison of causal standard models 

Normalized Roughness Factors 

Here we compare the computed dependencies to each other, together with analytical solutions found 

earlier in [4] for the Cannonball-Huray and Hammerstad models. This comparison is somewhat similar 

to [5], but for causal models. Figure 10 shows the real and imaginary parts of the complex correction 

factor (CCF) for “standard” models. The dependencies, shown as solid curves, are real parts; they don’t 

have initial offset and change from 0 to 1. The imaginary parts are drawn with dashed lines of the same 

color. Frequency is normalized as well. To use them in analysis, the dependencies must be scaled 



vertically by magnitude and horizontally along frequency axis, as required by metal profile or fitting to 

measurements. The resulting scaling factor becomes a complex multiplier at the impedance of a smooth 

metal so that the product is an additional impedance added due to metal roughness. 

 
Figure 10. Normalized complex correction factor for the five “standard” models: Cannonball-Huray, Groiss, Hammerstad, 

Hepispherical and Bushminsky. Real parts are shown with solid lines, imaginary – dashed of the same color 

It is important to see how close the real and imaginary parts are initially, and how large imaginary part is 

compared to real. The first characterizes loss due to roughness, because the difference between the real 

and imaginary parts is the loss correction factor. For example, we can see that the real and imaginary 

parts are very close initially for the Groiss (green) and Hemispherical (magenta) models. This initial 

region is where the loss factor stays at zero level. These two models also have the largest imaginary part 

that makes the loss and inductance correction factors quite different. On the other hand, in the 

Bushminsky model the real and imaginary parts are distant from the start, indicating that resistive loss 

starts at low frequency. Also, the Bushminsky model is the only one for which the real part of the factor 

peaks, and so does the inductance correction factor, although the loss factor remains monotonic. The 

imaginary part of the factor is what creates the difference between the loss and inductance correction 

factors (they differ by two times the imaginary part). Since a non-causal model assumes the same 

multiplier at the resistive and inductive portions of the impedance, the ratio between the imaginary and 

real parts could be a measure of “inaccuracy” of a non-causal model. For example, in the Groiss and 

Hemispherical models real and imaginary parts separate late, where the latter is considerable. For this 

reason, these models have minimal loss at low frequency but unusually large inductance factor. This 

also means that the non-causal versions of the Groiss and Hemispherical models are least accurate since 

they underestimate inductance the most. By these features, the Cannonball-Huray and Hammerstad 

models can be ranked between the Bushminsky and Groiss/Hemispherical. 



 
Figure 11. CCF represented as trajectory on the complex plane. Curves have the same colors as in Figure 10, normalized 

frequencies are designated with colored symbols. 

Figure 11 shows CCF trajectories on the complex plane. Since causal functions demonstrate clockwise 

curving of the trajectory as frequency goes from zero to infinity, the imaginary part of CCF is always 

non-negative. This also agrees with physics: a non-smooth metal profile increases magnetic field created 

by the current and so it does for internal inductance. As we see, for the Groiss and Hemispherical 

models the trajectory starts as a straight line, under 45 degree angle, indicating that both real and 

imaginary parts are equal and grow as f . The Bushminsky model has the smallest slope at low 

frequency, while the Cannonball-Huray and Hammerstad models are in between. 

Another interesting characteristic is model symmetry at low and high frequencies. Cannonball-Huray 

(red) is an arc of a circle cut by the right angle. It has identical slopes at low and high frequencies. The 

imaginary part reaches maximum when the normalized frequency is 1 and real part is half way between 

zero and its maximal value. The Groiss model is quite symmetrical as well. The Hemispheric model is 

tilted towards low frequency, while the Hammerstad and especially Bushminsky models are tilted 

towards higher frequency. Trajectories of the non-causal versions of the same models are all located 

within segment [0,1) on the real axis. At all frequencies, a non-causal factor is real and equals the loss 

factor. 

The next plot (Figure 12) is a trajectory that shows how the loss and inductance correction factors 

change over frequency. Since the loss and inductance factors are the difference and the sum of real and 

imaginary parts of CCF, respectively, they are related by congruent transformation and therefore the plot 

in Figure 12 is a copy of trajectory from Figure 11 rotated by 45 degrees. 

 



    
Figure 12. Trajectory showing how loss and inductance correction factors change with frequency. Same denotations as in Fig 

11. Trajectories of non-causal models lay on the black straight line 

Here, we can clearly see that trajectories of Groiss and Hemispherical models take off vertically, 

indicating early and considerable onset of the inductive component, when the resistive component 

remains unobservable. The smoothest onset is in the Bushminsky model; Cannonball-Huray and 

Hammerstad stay in between. Trajectories of the non-causal versions of all models make a straight line 

because they assume that inductance correction equals loss correction. We can still follow the progress 

for non-causal models by following the symbols designating frequency. As expected, causal and non-

causal dependencies give the same value of the loss factor at identical frequencies. The vertical distance 

between the causal and respective non-causal trajectories could be a measure of how much error we 

introduce when using the non-causal versions of the loss factor. The inductance correction factor grows 

monotonically in the Cannonball-Huray and Hemispherical models. The Hammerstad, Bushminsky, and 

to a lesser degree the Groiss model have inductance factor regressing at high frequency. 



 
Figure 13. Trajectories of the complex inductance. Same denotations as in Figure 11 and 12 

The trajectories of the complex inductance added due to roughness are shown in Figure 13. As causal 

functions, they curves clockwise, with real part going from right to left. For example, for the 

Hammestad model (blue) it starts on real axis at coordinates (1.8, 0) then goes down-left, reaches 

minimum, after which it goes up-left to the origin (0, 0). Similar behavior for Cannonball-Huray (red). 

The Groiss and Hemispherical models demonstrate some increase in real part of inductance before it 

begins to decline, without noticeable change in its imaginary part. This behavior is related to the very 

steep initial growth of the inductance when loss remains small. The Bushminsky model is quite special 

because its inductance at low frequency is infinite. It starts at ( , -1), then goes left with real part 

decreasing as  log 1 f , and imaginary staying close to -1, then joins other trajectories in their move to 

the origin. Infinite inductance at DC could be overlooked because due to zero limit  
0

log 1 0lim
f

f f


   , 

it brings no extra impedance. 

The inductance of non-causal models is complex but all trajectories move along the red line connecting 

points (0, 0) and (1, -1). The movement can be found for all of them by horizontal projection of a causal 

trajectory on this segment. For all of them - except for Bushminsky – the non-causal inductance starts at 

the origin, goes down right as imaginary part of the causal model decreases, then then turns and goes 

back to the origin. For the non-causal Bushminsky model, inductance starts at point (1, -1) and slides up-

left to the origin. Certainly, such behavior is physically impossible. 

The last in this series is Figure 14 that shows how much extra impedance is added due to metal 

roughness, when using different models. As we know, due to skin effect, the real and imaginary parts of 

the impedance of a smooth metal grow as f . In other words, such impedance would go along the 

black diagonal straight line on Figure 14. The impedance of rough metal, if modeled by a non-causal 

model, would also belong to the same straight line, although it may grow somewhat faster than f . 

The additional impedance added due to roughness (but with non-causal models) will be the difference 

between the latter and the former. Hence, it would also belong to the same diagonal straight line. 

However, not for the causal models. 



  

Figure 14. Complex impedance added due to metal roughness. Same denotations as in Figs 11-13. Impedance of all non-

causal models belong to the black straight line 

As we can see, all causal models add more to the inductive part of the impedance than they do to the 

resistive, since all their curves lay above the diagonal line. However, the Groiss and Hemispherical 

models are champions: the ratio between the imaginary and real part of impedance may reach 3-6 orders 

of magnitude! The Cannonball-Huray and Hammerstad models add considerable inductive portion, too. 

However, the Bushminsky model seems to add less than the others. Why, if it has infinite inductance at 

DC? In fact, the outstanding property of the Groiss and Hemispherical models is not in making the 

largest inductive contribution at a certain frequency, but making it much larger than their contribution to 

the resistive loss. Indeed, the red star (corresponds to normalized frequency = 0.01) on the Groiss curve 

is not higher than the corresponding value on the Bushminsky model curve, however, the resistive loss 

at this frequency in the Groiss model is much smaller. It is a direct consequence of the very steep 

increase of the inductive factor over the resistive factor that we observed in Figure 9. 

Scaling Roughness Factors by Magnitude and Frequency 

Of course, in any practical case we need to properly scale the found models by magnitude, and adjust 

their frequencies considering the actual metal profile. Or, if measured data is available, fit their 

magnitude and frequency factors to it. Here, we take the example from [4], where the causal 

Cannonball-Huray roughness model, together with dielectric parameters, has been fitted to measured 

data. See corresponding insertion loss (IL) curves in Figure 15a, cyan – measured, red – fitted by 

adjusting the Cannonball model. Parameters of the Cannonball model were calculated assuming

3zR m that approximately corresponds to 0.85rms m  . The latter was used for all other standard 

roughness models (Hammerstad, Groiss, Hemispherical, Bushminsky), which were also adjusted by the 

magnitude of the loss factor to match the Cannonball model at 50GHz. Loss factors adjusted this way 

are shown in Figure 15b. The corresponding inductance correction factors are in Figure 15c. They are 



larger than loss factors, and have different shapes. Unlike loss correction factors, there exist no single 

frequency at which all inductance factors become equal.  

We can see some similarity between IL and loss factors. For example, the Groiss model (green) has the 

largest loss factor from 1 to 50 GHz (Figure 15b), which translates into the largest attenuation in Figure 

15a. The Cannonball and Hemispherical have the smallest attenuation in this range, which we can 

observe in the IL plot as well. If some model dominates by the loss factor at a certain frequency, we 

observe the same effect in the IL plot, too. 

 
                                (a)                                                                 (b)                                                               (c)  

Figure 15. Insertion loss computed using different roughness models (a); loss correction factors (b); and inductance 

correction factors (c) 

Unlike loss correction, the inductance correction factor mostly affects the phase delay and characteristic 

impedance, not IL. A larger value of inductance factor means more contribution to the PUL inductance, 

which increases the phase delay and characteristic impedance. Figures 16a and 16b show the phase 

delays and the line’s TDR impedance plots for all standard models, causal and non-causal. 

  
Figure 16. T-line phase delay with different roughness models (a); TDR impedance plots (b). Solid lines represent causal 

models, dashed – non-causal 

 

For example, the inductance factor in the Bushminsky model is larger than that of the Groiss model 

approximately up to 250MHz, and so is its phase delay, too. Then, the inductance factor of the Groiss 

model dominates up to about 3.5GHz, and so does its phase delay, etc. The TDR plot is a function of 

time, and here we can see dominance by impedance, but in inverse order. During a very short period 

immediately after start, the Cannonball model (red) creates the largest impedance. Then, between 20 and 

400 ps, the largest impedance is shown by the Groiss, and finally by the Bushminsky model. The phase 

delays and TDR impedances of non-causal versions are always smaller than causal. Also, the order of 

dominance is defined by their loss correction factor, because it is used as a multiplier for the inductive 

roughness contribution, too. 



How about the infinite inductance of Bushminsky model at DC? Indeed, we can see that it has the 

largest phase delay at small frequencies and also the largest impedance in “large times”. However, an 

impedance added due to roughness comes to zero together with frequency. Interestingly, the normalized 

inductance of non-causal Bushminsky model remains bounded, because it assumes identical magnitudes 

for the real and imaginary parts, and so the real part of the normalized inductance at DC would approach 

1, not infinity. As we see from Figure 16a, its phase delay plot (dashed black) stays below those from 

the Groiss, Cannonball and Hemispherical models, which are known to have a finite internal inductance.  

To conclude this section, let’s note that causal models of metal roughness dependencies are no less 

diverse as their non-causal counterparts. They also require “adjustment” to match measured 

dependencies. However, their contributions to the transmission line loss and inductance are different – 

although not independent – functions of frequency. It is therefore recommended to consider all available 

dependencies, including insertion loss, phase delay, TDR impedance etc. which depend on both loss and 

inductance correction factors. 

Conclusion 

In this paper we proposed a reliable method of restoring the causal complex roughness correction factor 

from a given dependency that defines loss correction factor. Here, we do not require the loss correction 

factor to be an analytical function of frequency. It could be a function, but might also be a tabulated 

frequency dependence found e.g. from measurements. The problem is solved by fitting a known 

imaginary part of an internal complex inductance with a set of causal basis functions. Such basis 

functions involve fractional powers of complex frequency, which is dictated by the nature of metal 

roughness dependencies. We applied this approach to a number of “standard” metal roughness models: 

Groiss, Hemispherical, Bushminsky, as well as to “custom”, which describe the loss correction factor by 

tables. In all cases, the proposed method helps us to restore causal complex model accurately and 

reliably. With the full complex dependencies restored, we see that they are more diverse that we would 

think, considering loss factor alone. 
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